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C O N N E C T E D  E Q U A T I O N S  

OF HEAT A N D  M A S S  T R A N S F E R  

IN A C H E M I C A L L Y  R E A C T I N G  

SOLID M I X T U R E  W I T H  ALLOWANCE 

FOR D E F O R M A T I O N  A N D  D A M A G E  

A . G .  K n y ~ e ~  UDC 536.46+539.3+531 

Changes in the properties of a substance due to a chemical reaction (change in the concentration of 
components), thermal expansion upon heating, and inhomogeneities in the structure of the substance (both in 
the initial state and during heating and reaction) determine the volume changes dV/Vo = (V  - Vo)/Vo of the 
substance. For many solids, these changes are small and have no effect on heat and mass transfer processes. 
For high heating rates or significant differences in the properties of the reactants and products, a volume 
change dV can lead to the occurrence of stresses in the reaction zone and even to damage (accumulation of 
defects and inhomogeneities in the structure compared with the initial state). We write these changes in the 
form 

d V  = - ~  Nk,v p k T, vp,Nj,j# k T,N k 

or 

V v0 
3 - To)+ E - N o) + - (1) 

Vo k 

where aT = (1/3) (OV/OT)Vo  1 is the coefficient of linear thermal expansion; a} = (1/3)(OV/ON•)Vo-' is 
the coefficient of concentration expansion for each component; ctr = (1/3)(OV/c3vp)Vo 1 is the coefficient 
of structural expansion; Nk is the concentration of the kth component; vp is the volume of damage 
(discontinuities, pores, cracks, etc.). We can speak in general about a change in structure inhomogeneity 
of one or another type. For simplicity of analysis, we restrict the consideration to overall volume changes. In 
expansion (1), only first-order terms are taken into account, by virtue of the smallness of the coefficients aT, 
ak, and ctc in accordance with their meaning for a solid medium. Let us determine how small changes (1) 
manifest themselves in heat and diffusion equations. For this recall that with temperature and volume changes 
in the system, the free energy F is the main thermodynamic potet~tial [1]. Its total differential is written as 

dF = dF ~ + dF'. (2) 

Here dF ~ is the change in the free energy due to heating and chemical reaction: 

dR ~ = - S d T  + y~ gkdNk, (3) 
k 

where #k is the chemical potential of the kth component; S is the entropy of a unit volume; and dF' is the 
change in the free energy during deformation and damage: 

dF' = ~_, aodr j + ~_, X,,ndw,m, (4) 
ij  lm 
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where eij are the components of the strain tensor, aij are the components of the stress tensor, wlra are 
the components of the damage tensor, and Xtm is the corresponding potential. Similar approaches are used 
in fracture mechanics [2, 3]. According to (1), the damage tensor wii can be described by one parameter 
r = vp/vpo. Hence, wzm = r for l - m and wire = 0 for l ~ m. It follows from (2)-(4) that 

S = -(OF]OT)Nk,eii,,~t,~, aij = (OF/Oeij)Nk,T,,qm, (5) 

Pk = (OF/ONk)wl,n,~ij,Nn,,,#~,T, Xim = (OF/Owlm)Nk,T, ei i.  

For an isotropic medium, to which we restrict our consideration, and for relatively small strains, the free energy 
can be expanded into a series in the vicinity of an undeformed state [4, 5], F(T ,  N t ,  r~ where r ~ = (vp/vpo) ~ 
is the degree of damage of the undeformed medium. In the general case, r ~ depends on the mixture ratio 
and temperature. Hence, the components of the tensor Xij in the undeformed state are determined as follows: 
Xij = (OF~176 In a particular case, we can assume that r ~ = const = 1 for eii = 0. With allowance for 
terms of second-order smallness with respect to eii we have 

F = F~  Nk,  r ~ + I ,  + ~ - ~ 2 )  12 + + . . . ,  (6) 

where I t  = e i i  = ell  + ~22 + e33; 12 = ziir 
From(5) and (6), we find expressions for the stress components: 

OF ~ I 02F OF 
= + ,j + (7) 

We determine the coefficients in (6) [or (7)] as in [4, 6] from empirical considerations. For i ~ j from (7) we 
obtain aij = 2eii(OF/OI2)T3Vk,~,~, i ~ j .  From Hooke's second law for pure shear it follows that ~i1 = 2G~ij. 
Hence, we have (OF/OI2) = G (G is the shear modulus). For small purely elastic strains G = p is valid (# is 
the Lamb coefficient or the shear modulus within the limit of elasticity). For systems subjected to nonlinearly 
elastic or plastic deformations, we have G = [E/2(1 + v)](1 - e) = p(1 - e) [E is the elasticity modulus (Young's 
modulus); v is the Poisson coefficient; and e is the generalized strain function [6, 7], which is different from 
zero beyond the limit of elasticity)]. 

For i = j from (7) we find expressions for the components a11, a22, and a33, and, summing these, we 
obtain 

OF [3 02F 1 
= 3 Tf; + e,, [ Ti ( + 2 . ( 1 -  (8) 

where eli = eH + e22 -b e33 = /1 is the volume change. If there are no volume and mass forces, and the 
volume change eii is due only to thermal, concentration, and structural expansion in the free state, we have 
e i i =  (V  - Vo)/Vo. Hence, the relationship between the expansion coefficients OF~OIl and 02F/OI  2 is written 
in the form 

o l ,  = - Vo 3 + 2 . ( I  - e l  �9 

If the temperature, the concentrations of the mixture components, and the degree of damage do not 
change, i.e., the volume of the system is unchanged, from (8), we obtain 

2F ] 
crii = eli 3 ~ -t- 2#(1 -- e) . (9) 

For the uniaxiai stressed state of such systems Hooke's first law holds, according to which all = Ecll ,  
and transverse strains, according to the Poisson law, are related to ell by the formulas g22 - ~  ~ 3 3  -~" --b'~ll- In 
this case we have a i i =  or11 = (E/(1 - 2u))eii. From a comparison of the latter equality and (9), we obtain 
02F/OI~ = A + 2#e/3, where A = Eu/[(1 - 2u)(1 + u)] is the second Lamb coefficient. As a result, the free 
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energy of the undeformed system is written as 

W l~+ A elk +r162  + - ~ e  , 

where the repeated subscripts, as before, denote summation. The generalized Hooke's law for elastoplastic 
deformations of an isotropic reacting medium with allowance for its degree of damage is written as 

aij = -,~ij ~ # + - el, i, a~e + 2/z(1 e)$ij. (11) 

Here the additional terms are due to temperature T and concentration changes and to structural distortions 
(1). The latter distinguishes these relations from those in [6]. The quantity K = ,k + 2#/3 is the modulus of 
uniform compression. For e = 0, from (11), we obtain a relation for the first invariants of the stress and strain 
tensors in the form 

gkk = 3K (ekk V - V0 

which coincides, in the corresponding limiting cases, with the well-known relationship for purely elastic 
deformations and constant volume [4] and with the relation obtained in [8] for systems with internal 
concentration stresses and strains. The analogy among temperature, concentration, and structural stresses also 
holds true in the presence of viscous deformation. To extend the resulting formula to the case of elastoplastic 
deformations, we write (10) in a somewhat different form (we set e = 0): 

F = F ~ 1 7 6 1 6 2  - 1  2 K 2 -Jijekk] + Tekk. 
Bezukhov [7], when considering only concentration stresses, separates the part of the free energy that 

is determined in experiments in the absence of loads (aij = 0). Proceeding similarly, from the latter expression 
we find that 

F = F c h e m  - -  K-'~oekk + # eij - - ~ i j s k k  + "~ 

where Fchem = F ~  (K/2)  [dV/~]2; dWVo takes into account all types of strains that accompany the chemical 
reaction. 

For further generMization, we separate the deviator part from the stress and strain tensors using the 
formulas rij = aq - 6ijo'kk/3 , eq = ell -- ~ijekk/3. 

The fairly general rheological model of a viscoelastic body in [7, 8] uses the operator relationship 

A t0  = Bei j  (I2) 

where A and B are differential operators that are linear in time. For example, 

0 m 0 m-1 0 
A = arn~'~  "4- arn-lo-~'ST_l q - . . .  q- a l - ~  -I- ao. 

The above analogy makes it possible to extend the theory of thermoviscoelasticity and concentration 
viscoelasticity to a more-general case. From (12) and the relationship between the first invariants of the stress 
and strain tensors, we obtain 

Ao'ij = B [eij - gijekk/3] q- 6 i j A K  Ekk -- , 

from which for specific types of operators A and B we obtain relationships between stresses and strains for 
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the particular cases of viscoelastic media. Thus, for the Maxwell viscoelastic model [9], 

1 0 1 0 
A -  2pcgt + ~-~, B =  O-" ~ 

where ze is the shear coefficient of viscosity, we have 

aij -~ 2ggij "4- ~ij -~  Keij  - K - "~geij "k --~ ekk -- �9 

In addition to the generalized relations (11) and (13), using (5) we obtain the chemical potentials of 

the components of the reacting mixture: 

-ffo (5 .+  k 
where p0 is the chemical potential of the kth component in the absence of stresses and strains. 

In the same way, we obtain formulas for entropy 

g 5 (14) 

and for the damage potential 

= x L  - O-572,  Woo 5 " + +3 
In the particular case of constant A and g, we have 

gk = #~ - (3A + 2#) ak~,n,n, S = - S  ~ + (3A + 2g) aT6mm , 

xi . ,  = x~., - ~l., (3A + 2g) c~cvp0~kk. 

According to the definition of the daznage tensor, the components of the tensor X~m are written in a form 
similar to wl,n: 

X~m= (OF~ cgr~ = h  ~ l = m ;  X~m=O, l C m .  Nk,T 

Here h ~ is determined by the internal properties of the medium and its structure. In particular, if r ~ is 
the relative volume of dislocations in a crystal (accumulations of dislocations), which are potential centers 
of fracture (formations of microcracks) [10] and potential nucleation sites during initiation of a solid state 
reaction [11], h ~ is their structural chemical potential. By analogy, one can introduce the potential for damage 
of various types. Variants of the tensor description of damage in a medium are given, e.g., in [2, 12, 13]. 

The balance equations for any additive quantity a are common for any type of continuous media (with 
damage and without it) [1, 5]: 

cga 
0"-t = -d ivJ~  + ~ ,  (15) 

where J~ is the flux of the quantity a; #~ is the sum of sources and sinks for a (components of the reacting 
mixture and damage of different types). The Onsager relations between the fluxes and the forces acting on the 
latter are also identical for continuous media of various types. In addition, we write the equilibrium equation 

#ij,i + Xi = 0 (16) 

where Xi are the components of the external force vector). For high-velocity processes, (16) should take into 
account inertial terms. 

Let us next consider specific types of reactions and media. We assume that a solid-state reaction 
described by the scheme As "-* Bs proceeds in the system. The initial chemical potential g0, entropy S ~ and 
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the initial properties of the medium are determined with allowance for its initial damage. The energy equation 
in the form of a generalized heat equation for a simple isotropic medium is written as [5] 

T OS = -d ivJq  + W, 
Ot 

where TOS/Ot is the amount of heat absorbed by a unit volume per unit time; Jq is the heat flux density; 
W is the density of the internal heat sources and sinks (for example, of a chemical nature). Ignoring the 
overlapping effects, i.e., assuming that the heat flux density is proportional only to the temperature gradient 
Jq = -•TgradT,  taking into account that OS~ = -(c~poOT/Ot)T -1 [1, 5], and using (14), we obtain 

OT [dV] (17) poc~ ~ -  = div($Tgrad T) + W - T 0 0 g 
a t  �9 

In the particular case of elastic uniaxial deformation (i.e., when only one component of the tensor e i j -  ell is 
different from zero), we have 

ekk = ell  and 0.11 = (A + 2#)ell - KdV/Vo, 0"22 = 0"33 = Aell - KdV/Vo. 

For the reaction considered, from (1) we obtain 

dV 
"~0 = 3 [aT (T - To) + Aanr /+  acvp0 (r - 1)]. (18) 

Here t/ is the degree of conversion of the substance; the quantity Ac% is proportional to the difference in 
the coefficients of concentration expansion between the product and the reactant. In the general case, the 
parameter ~ a ,  7 can have any sign. If A a ,  > 0, the concentration stresses are tensile; otherwise, they are 
compressive. Structural inhomogeneities such as dislocations and microcracks should facilitate tensile-stress 
relaxation; therefore, it is reasonable to assume that crc < 0. We note that inhomogeneities are themselves 
sources of stresses, and hence positive values of crc are possible in principle. In the absence of external forces, 
from (16), (lS), and Hooke's law it follows that 

3A + 2p dY (19) 
e l l -  ~+2p 3V0' 

i.e., the magnitude and sign of strains that accompany a solid-state chemical reaction depend on the 
temperature (hence on the thermal effect of the reaction), the degree of conversion (or change in the properties 
of the substance during the reaction), and the damage to the medium. In turn, internal strains directly affect 
the temperature field. For example, for unchanged $ and g, we have 

OT 0 . OT T (3t + 2g) 2 2 OT Aa__._~_~ 0__~ acVp________o 
poc  o t  - Ar-g-   + w -  a r  + o t  + a T  ' 

where the terms in the braces are additional heat sources and sinks, which owe their origin to the connectedness 
of the deformation, heat transfer, and damage processes in the substance. The extent to which damage 
processes influence temperature is determined by the specific kinetics of the damage. In many models [13], 
the damage accumulation rate c3r/c3t is a function of pressure p < 0, which can be determined as 

P = (0"11 "4- 0"22 + 0"33)/3.  (20) 

Hence, during a chemical reaction the degree of damage is an inherent property of the reaction. In the simplest 
case, where the accumulation of the reaction product is governed only by the act of chemical transformation, 
for ~ we write 

077 
o-7 = 0" j, (21)  

In developing macrokinetic models of various solid-state reactions [11], the question arises (see, for 
example, [8, 14, 15]) as to the mechanism of solid-state diffusion, which in essence determines the solid-state 
reaction rate or is one of the main stages of the reaction. Assuming that the flux of each component J/c 
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depends only on the gradient of its chemical potential and taking into account the well-known relation for 
diagonal kinetic coefficients in the Onsager formulas Lt~k = D k k N j ( k T )  (k is the Boltzmann constant), for 
unchanged A, ~u we have 

where ?#0 ,  V/z0 are the chemical potentials of the combined reactants and products without taking into 
account strains, V / ~  = k T V N j N } .  Using the concept of the degree of conversion, from (15) and the latter 
formulas, we obtain 

0y0_.t. = div [O'grad,/] + zoqol(rl)qo2(T, ai j ,r  , 

where 

D' = D22 (1 -- An,/3~ + 2~ Vekk~ 
k T  r l ' - ~  ] 

is the effective diffusion coefficient. In the particular case of uniaxial strain and constant ,~ and/~ we have 

0r/ 0 _ ( ~  Z [ r] 02gl l  17 Oelx OT 1 (~$11 6977] 
m = u x u x Z 2 " -  D22Z-L'- + 0qolqo2 - A n ,  (3A + 2/~) D22 Lk T Ox 2 k T  2 0---~ 0--~ + k T  0 ~ x x ]  (22) Ot 

where 6n  is the result of the chemical reaction itself. 
The diffusion equation (22) is essentially nonlinear even with such a primitive approach to mass transfer 

in a solid. When considering specific diffusion mechanisms in crystalline bodies or glass-like polymers, these 
equations become even more complicated. In this case it is important  to take into account possible feedback 
between the diffusion in a solid body, the chemical reaction rate, and the stresses and strains which inevitably 
accompany a solid-state reaction. Depending on the value and sign of the resulting total strains, the effective 
diffusivity can either decrease or increase, and this is determined by the specific type of reaction. 

A similar equation of the diffusion type can be derived for the degree of damage r in the medium, in 
particular for dislocations. 

We consider two different examples of use of the suggested approach. The simplest model for the 
initiation of a solid state reaction As ~ Bs (unsteady solid- state combustion) includes an energy equation 
in the form of a generalized heat equation that  follows from (19): 

, OT . 0 2 T  , 

c, po-ff[ = AT-~-~z 2 + Qozo~, ( rl )vz(  r )  - ~o3( T, r ), 

where 

= Q0 1- gy. ; 

qo2(T)=exp  - ; q o l ( r / ) = l - r / ;  ~ o s ( T , r ) = ~ 6 ~ * *  

is the additional heat release due to damage; 7 = c, poRT2,/(EQo) is a small parameter  in combustion theory; 
g = AaBACepO/(OTQO); ae : acVcOc~po/(aTVoQo) < 0; 6 = (3KaT)2T,/[()~ + 2/u)c~p0] is the coefficient of 
connectedness of the strain and temperature fields, and also the equation for the stationary product (20), 
where the heat release function depends only on temperature and on the fraction of the reactant 1 - r /and 
the initial and boundary conditions are as follows: 

OT OT 
X = 0: --IT~-'~x = q0, z --* oo: --Oz = 0, t = 0: T = To, r 1 = 0. 

Strains are related to other quantities by formula (17). 
In terms of the variables 

_ 
T - T ,  
RT2 , /E  , ~ = 

x t Vc 
, e l l  ---- 611/~ , ,  ~,  ---- 3 a T K ( T ,  - To)/(A + 21~) 

t ,  ' VcO 
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we write this problem in the form 

~ 0 :  

where 

f l  0 O0 020 Or 0 ( )-'~r = O~ 2 + qOl(rl)qa2(O)f2(O)- -~r f3( )' 

_ m Or/ 
~,~ = 0 + Oo + g ~ + (~ - 1), - -  = ~ , (~ )~ 2 (0 ) ,  

7 7" Or 

-OOlO~=Qo, ~ 0 :  OOlOr=o; r = O :  e = - O o ,  

q o  
O o -  aT2,~------------ ~ >> 1; Qo = RT2, ; ~2(0) = exp 

qal(rl)= l - r l ;  B= RT2,/E << I; 

r t=O , r =  I, 

7", is the characteristic temperature of the process (for example, the ignition temperature [16]); t,  is the 
characteristic time of chemical reaction (for example, the period of adiabatic induction at temperature 7', 
[16]). For the accumulation of damage we assume the law which is rather popular in failure mechanics [13]: 

[ ~  Ovc_ P Vc+v~exp - p p < O ,  = 0 ,  p ) O .  
Ot Zec ' Ot 

Here p0 characterizes the critical level of the average pressure (20) that is necessary for the occurrence of 
damage; aec has the meaning and dimensionality of dynamic viscosity; v* is the specific volume of potential 
centers of formation of cracks or of pores, which essentially can be identified with vc0. In dimensionless variables 
we have 

a r - - - s k c  r + e x p  - , s < 0 ,  

where s = p/a.; so = p0/o',; kc = a,t./Zec; or, = e,(A + 2/~). In this case, in contrast to existing theories for 
similar processes, the physical reason for the temperature dependence of heat capacity is clear. In addition, 
the dependence of heat release in a chemical reaction on the type of reaction is explicitly obtained, i.e., 
if the reaction proceeds with volume expansion (g > 0), the concentration stresses and strains decrease 
the total exoeffect; if the reaction proceeds with a decrease in volume (g < 0), the effect of an apparent 
parallel exothermic reaction is observed. According to the meaning of the physical parameters involved in the 
dimensionless complex, the value of this complex ~ec is most likely small, since ac ~ aTQo/(c, po) and vc/vco << 
1. The connectedness coefficient g calculated at temperature T, is on the order of 1, which distinguishes it 
from the analogous coefficient in thermoelasticity theory. An example of numerical solution of the problem 
for/3 = 0.032, ~ = 0.392, g = 2, 00 = 16.2, kc = 0.03, so = 4.18, ze = - 1 0  -2, 7 = 0.034 is given in Fig. 1. 
It is seen from this figure that strains follow the chemical reaction zone deep into the substance and tensile 
stresses in the front plane lead to damage in the reaction zone. The values of the parameters p0 and zec used 
in estimating so and k e a r e  characteristic of failure mechanics. 

The calculations show that all possible energetic terms entering into the heat equation (heat release 
in reaction, endoeffect or exoeffect of the apparent parallel reaction, heat release due to damage, etc.) 
are comparable in magnitude and, depending on the values of the parameters lead to different modes of 
propagation of the reaction. As a result, the characteristics of the reaction zone determined in an experiment 
may not have the physical meaning that was assigned to them according to classical ignition and combustion 
theories. An analysis of a steady-state model of a solid-state combustion front based on such ideas has been 
carried out in [17]. 

As a second example we consider a steady-state model of a decomposition reaction As ~ Bg. 
Macrokinetic models of diffusion reactions are little used. The features of such reactions can be outlined 
rather briefly. They include localization of the reaction at the interface between the reactant and the product, 
the important role of transfer processes of one or another type, and the presence of feedback between various 
physical phenomena accompanying the reaction. The decomposition of solids under isothermal conditions can 
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Fig. 1. Spatial distribution of the degree of conversion '1, deformations 
en ,  and specific volume of damage r at different moments in time: curves 
1-9 correspond to r = 2, 6, 10, 11.5, 13.3, 15, 16.7, 18.7, and 20 

begin on the surface for two main reasons. First, the best conditions for removal of the reaction products 
(liquid or gaseous) exist there. Second, a solid surface is the most active place for a reactant; inhomogeneities, 
i.e., potential centers of nucleation of the product are concentrated there. In this case, the initial concentration 
of the product in the surface layer is a characteristic of the chemical reactivity of the substance. The further 
reaction has a frontal character due to the presence of feedback between different physical phenomena and the 
chemical reaction. The simplest steady-state model of reaction-front propagation for the reaction As ---+ Bg 
(under isothermal conditions) with allowance for deformation and damage follows from (17), (21), and (22) 
and includes the equation of consumption of the solid reactant A, which is considered immovable, 

d'11 = _z1'1~'1~n ' x > O, gl)r t  d x  

the diffusion equation for the gaseous product B in the solid phase 

~.~ { de11~ n m - v,,--dTzd'12 = Ds . _  d'12dx kT'12 3Kcr T -~-z J + z2'11 '12 , x > 0, 

where "ell = 3K{~A('11 -- '110) + ~B('12 -- '/2o) + ac(Vc -- vco)}, the diffusion equation for the product in the 
gaseous phase ('12 -+ '1g) 

_,~ J,lg = D d2'1g, 
dz gT~z 2 z < 0 ,  

the balance relationships at the interface x = 0 

- D  d'1g drl2 D '12 d~lt 
rla = '12 = '1" g dx = -Ds-dTz + s - ~  3Kv~T d'-"7- 

and the conditions at infinity from z = 0 

x - -~c r  ' 1 1 : 1 ,  '12=0; x ~ - o r  ~/g='1~o. 

The steady-state problem is written in the system of coordinates connected with the reaction front; the 
quantity z2/z l  = ko shows how many moles of substance B are formed from substance A; the source terms 
in the equations for the components reflect the autocatalytic character of most solid-state decomposition 
reactions [11]; n and m are the formal orders of the reaction with respect to the reactant and the product (as 
a rule, fractional quantities). The solid-gas interface is determined by the condition x = 0:'11 ~ 0, vc/Vo ---+ 1, 
which in fact corresponds to complete damage. In the stationary problem, the diffusion equation for a gas 
has only the trivial solution '1a = '1~ = ,72(0) = ,7.. The equations for the solid phase admit the first integral. 
As a result, the problem is reduced to integration of a system of first-order differential equations, which is 
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Fig. 2. Profiles of concentrations, stresses, strains, and the degree of 
damage in a stationary wave of chemical reaction As ~ Bg: p = 3.5, 
rz0 = 0.05, w = 0.3, w,  = 3.0, ~e = 0.1, c~ = 2.0, k0 = 1, and 7c. = 1.71 

written in terms of the variables E, = x / ~ s / z z  and ra = vc/V0 (different from r) in the form 

dE, 
&?2 
dE, [1 -wrl2 ] = - (wnrl2 + kown(yl - 1 ) -  wc~-Zr/~r/~n+lwn I - arzoWee rl2 drZl,dE, J '  

dr" z [ 3~[r -I-rlOexp(--s/so)l/wn, 3 < O, 

dE, = ~. O, s >. O, 

exz = rh - 1 + arl2 + ~e(rz - rzo)/rlo, 

~ o o :  ~ x = l ,  ~ 2 = 0 ,  r z = r x 0 = v c 0 / V 0 < < l ;  

--*0:  7/1=7/1,<<1, rl2=r/2,~<k0, r i l l ,  

where a = OtB/ota; w = 3Kot2B~,/kTaA; ~, = 3aAKNAo/()~ + 2#); ell = elZ/~,; Wn = vn/Ox/-D~szl; and 
ae = ~cVcO/(OtaNAo ). 

An analysis shows that to each value of the front velocity Wn > w,~, satisfying the conditions of the 
problem and the monotonicity of the concentration profile 7/1 G]0.1[ corresponds a unique value of the rate 
constant of crack growth %. that ensures joint steady-state propagation of the chemical reaction zone and the 
failure zone. Concentration, stress, and strain profiles and the profile of the degree of damage in the reaction 
zone of a steady-state wave of chemical reaction are shown in Fig. 2. 

Note that similar modes of propagation of chemical transformation are observed under real conditions. 
Thus, degradation in the reaction zone is characteristic of the decomyosition of azides, ammonium perchlorate, 
and potassium permanganate [11, 18], where diffusion is an elementary reaction stage. 

In conclusion we note that the coefficients ~/c, C~T, and otc used above are well-known quantities in 
heat- and mass-transfer theory [6], in the theory of elasticity, in thermomechanics [9], and in the connected 
theories of matter transfer and of strain [8, 9, 14, 15], but for the consideration of specific physical processes 
or reactions of different types, these quantities need a more precise definition. Thus, for purely solid-state 
diffusion in a system of two substances (A and B), the ratio of the concentration expansion coefficients a a  
and oq3 is assumed to be equal to the ratio of the atomic volumes of the diffusing substances [8, 14]. By the 
atomic volume is meant the volume occupied by a given atom in its crystalline lattice. If the substances A 
and B are in different phases, the ratio of the coefficients apparently must be proportional to the ratio of the 
typical atomic or molecular volumes of these substances. Naturally, as the gaseous product moves in the solid 
phase toward the gaseous phase, this ratio is changed. 

Consequently, the coefficients C~T, c~k, and ac are in the general case functions of the temperature, 
of the concentration of components, and of the degree of damage of the medium, as was assumed in [6]. 
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The quantity vc (volume of damage) has been borrowed from the kinetic theory of failure [2, 3, 13]. Also, 
numerous models of media with chemical reactions have been described in the literature [5]. For historical 
reasons, however, these models have not been used widely in macrokinetics. 

The above method of deriving transfer equations for a solid, in addition to [19], can be applied not only 
to the analysis and macrokinetic modeling of slow solid-state reactions, examples of which are given in [11], 
but also to modeling SHS processes, reactions under specific conditions (for example, under conditions of high 
pressure and strain), and solid-state detonation. The high chemical reaction rates and anomalous velocities 
of mass transfer appear to be associated with the above mechanisms of interaction of different physical and 
chemical processes. 

Similar methods, a survey of which is given in [5], can be used to develop models of anisotropic and 
nonlinear media. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 94-03-08220). 
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